Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 244: 125421, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330074

RESUMO

The regeneration of enthesis tissue (native tendon-bone interface) at the post-surgically repaired rotator cuff remains a challenge for clinicians, especially with the emergence of degenerative affection such as fatty infiltration that exacerbate poor tendon-bone healing. In this study, we proposed a cocktail-like hydrogel with a four-layer structure (BMSCs+gNC@GH) for enhancing fatty infiltrated tendon-bone healing. As collagen and hyaluronic acid are the main biomacromolecules that constitute the extracellular matrix of enthesis tissue, this hydrogel was composed of UV-curable gelatin/hyaluronic acid (GelMA/HAMA) dual network gel (GH) with nanoclay (NC) and stem cells loaded. The results showed that NC exhibited a cocktail-like gradient distribution in GH, which effectively mimicked the structure of native enthesis and supported the long-term culture and encapsulation of BMSCs. What's more, the gradient variation of NC provided a biological signal for promoting gradient osteogenic differentiation of cells. Based on the in vivo results, BMSCs+gNC@GH effectively promoted fibrocartilage layer regeneration at the tendon-bone interface and inhibited fatty infiltration. Therefore, BMSCs+gNC@GH group exhibited better biomechanical properties. Thus, this cocktail-like implant may be a promising tissue-engineered scaffold for tendon-bone healing, and it provides a new idea for the development of scaffolds with the function of inhibiting degeneration.


Assuntos
Lesões do Manguito Rotador , Humanos , Lesões do Manguito Rotador/cirurgia , Manguito Rotador , Gelatina/farmacologia , Ácido Hialurônico/farmacologia , Cicatrização , Osteogênese , Tendões , Hidrogéis/farmacologia , Fenômenos Biomecânicos
2.
Biol Trace Elem Res ; 200(1): 298-307, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33594527

RESUMO

The incidence of type 2 diabetic osteoporosis (T2DOP), which seriously threatens elderly people's health, is rapidly increasing in recent years. However, the specific mechanism of the T2DOP is still unclear. Studies have shown the relationship between iron overload and T2DOP. Mitochondrial ferritin (FtMt) is a protein that stores iron ions and intercepts toxic ferrous ions in cells mitochondria. Ferroptosis, an iron-dependent cell injured way, may be related to the pathogenesis of T2DOP. In this study, we intend to elucidate the effect of FtMt on ferroptosis in osteoblasts and explain the possible mechanism. We first detected the occurrence of ferroptosis in bone tissue and the expression of FtMt after inducing T2DOP rat model. Then we used hFOB1.19 cells to study the influence of high glucose on FtMt, ferroptosis, and osteogenic function of osteoblasts. Then we observed the effect of FtMt on ferroptosis and osteoblast function by lentiviral silencing and overexpression of FtMt. We found ferroptosis in T2DOP rats bone. Overexpression of FtMt reduced osteoblastic ferroptosis under high glucose condition while silent FtMt induced mitophagy through ROS / PINK1/Parkin pathway. Then we found increased ferroptosis in osteoblasts after activating mitophagy by carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP, a mitophagy agonist). Our study demonstrated that FtMt inhibited the occurrence of ferroptosis in osteoblasts by reducing oxidative stress caused by excess ferrous ions, and FtMt deficiency induced mitophagy in the pathogenesis of T2DOP. This study suggested that FtMt might serve as a potential target for T2DOP therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Ferritinas/metabolismo , Ferroptose , Proteínas Mitocondriais/metabolismo , Osteoporose , Animais , Ferritinas/genética , Proteínas Mitocondriais/genética , Mitofagia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases
3.
Entropy (Basel) ; 23(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066807

RESUMO

Background: the credit scoring model is an effective tool for banks and other financial institutions to distinguish potential default borrowers. The credit scoring model represented by machine learning methods such as deep learning performs well in terms of the accuracy of default discrimination, but the model itself also has many shortcomings such as many hyperparameters and large dependence on big data. There is still a lot of room to improve its interpretability and robustness. Methods: the deep forest or multi-Grained Cascade Forest (gcForest) is a decision tree depth model based on the random forest algorithm. Using multidimensional scanning and cascading processing, gcForest can effectively identify and process high-dimensional feature information. At the same time, gcForest has fewer hyperparameters and has strong robustness. So, this paper constructs a two-stage hybrid default discrimination model based on multiple feature selection methods and gcForest algorithm, and at the same time, it optimizes the parameters for the lowest type II error as the first principle, and the highest AUC and accuracy as the second and third principles. GcForest can not only reflect the advantages of traditional statistical models in terms of interpretability and robustness but also take into account the advantages of deep learning models in terms of accuracy. Results: the validity of the hybrid default discrimination model is verified by three real open credit data sets of Australian, Japanese, and German in the UCI database. Conclusions: the performance of the gcForest is better than the current popular single classifiers such as ANN, and the common ensemble classifiers such as LightGBM, and CNNs in type II error, AUC, and accuracy. Besides, in comparison with other similar research results, the robustness and effectiveness of this model are further verified.

4.
J Foot Ankle Surg ; 60(5): 881-886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781640

RESUMO

Few studies have characterized the clinical outcomes of 45S5 Bioglass® applied as a bone graft to that of allogeneic bone applied in calcaneal open curettage. Therefore, the purpose of the present investigation was to compare the outcomes of patients with calcaneal tumors and tumor-like lesions treated by open curettage with 45S5 Bioglass® or allogeneic bone. Of the 31 patients who underwent open curettage (18 cases of unicameral bone cysts, 7 cases of aneurysmal bone cysts, and 6 cases of intraosseous lipoma), 16 (52%) received grafts with 45S5 Bioglass® and 15 (48%) with allogeneic bone. All the feet achieved bone fusion according to the modified Neer radiographic classification system at the last follow-up examination. The mean bone ingrowth time for the grafts with 45S5 Bioglass® versus allogeneic bone was 3.71 ± 0.86 versus 4.46 ± 1.04 months (p = .038), the mean bone healing time was 4.86 ± 0.93 versus 5.73 ± 1.07 months (p = .021), and the mean incision drying time was 7.2 ± 1.8 versus 8.2 ± 1.5 days (p = .047), respectively. No differences were found in the postoperative American Orthopaedic Foot and Ankle Society ankle-hindfoot scale scores between the 2 groups (p = .213). These results show that 45S5 Bioglass® can better facilitate the formation of new bone with a faster drying time of the incision than allogeneic bone. Although both materials can benefit the clinical outcomes of calcaneal tumors and tumor-like lesions, further studies are needed to observe the long-term complications and lesion recurrence rates.


Assuntos
Calcâneo , Transplante de Células-Tronco Hematopoéticas , Calcâneo/diagnóstico por imagem , Calcâneo/cirurgia , Curetagem , Vidro , Humanos , Recidiva Local de Neoplasia
5.
Oxid Med Cell Longev ; 2020: 9067610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343809

RESUMO

Ferroptosis is recently identified, an iron- and reactive oxygen species- (ROS-) dependent form of regulated cell death. This study was designed to determine the existence of ferroptosis in the pathogenesis of type 2 diabetic osteoporosis and confirm that melatonin can inhibit the ferroptosis of osteoblasts through activating Nrf2/HO-1 signaling pathway to improve bone microstructure in vivo and in vitro. We treated MC3T3-E1 cells with different concentrations of melatonin (1, 10, or 100 µM) and exposed them to high glucose (25.5 mM) for 48 h in vitro. Our data showed that high glucose can induce osteoblast cytotoxicity and the accumulation of lipid peroxide, the mitochondria of osteoblast show the same morphology changes as the erastin treatment group, and the expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and cystine-glutamate antiporter (SLC7A11) is downregulated, but these effects were reversed by ferroptosis inhibitor ferrastatin-1 and iron chelator deferoxamine (DFO). Furthermore, western blot and real-time polymerase chain reaction were used to detect the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1); osteogenic capacity was evaluated by alizarin red S staining and the expression of osteoprotegerin, osteocalcin, and alkaline phosphatase; the results showed that the expression levels of these proteins in osteoblasts with 1, 10, or 100 µM melatonins were significantly higher than the high glucose group, but after using Nrf2-SiRNA interference, the therapeutic effect of melatonin was significantly inhibited. We also performed in vivo experiments in a diabetic rat model treated with two concentrations of melatonin (10, 50 mg/kg). Dynamic bone histomorphometry and micro-CT were used to observe the rat bone microstructure, and the expression of GPX4 and Nrf2 was determined by immunohistochemistry. Here, we first report that high glucose induces ferroptosis via increased ROS/lipid peroxidation/glutathione depletion in type 2 diabetic osteoporosis. More importantly, melatonin significantly reduced the level of ferroptosis and improved the osteogenic capacity of MC3T3-E1 through activating the Nrf2/HO-1 pathway in vivo and in vitro.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ferroptose/efeitos dos fármacos , Glucose/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteoporose/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Ratos Sprague-Dawley , Receptor alfa de Ácido Retinoico
6.
Sci Rep ; 10(1): 3078, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080264

RESUMO

The highly selective magnesium transporter non-imprinted in Prader-Willi/Angelman syndrome region protein 2 (NIPA2) has recently been associated with the development and progression of type 2 diabetes osteoporosis, but the mechanisms involved are still poorly understood. Because mitophagy is involved in the pathology of type 2 diabetes osteoporosis, the present study aimed to explore the relationship among NIPA2, mitophagy and osteoblast osteogenic capacity. NIPA2 expression was reduced in C57BKS background db/db mice and in vitro models of type 2 diabetes osteoporosis, and the activation of mitophagy in primary culture osteoblast-derived from db/db mice and in high glucose-treated human fetal osteoblastic cells (hFOB1.19) was observed. Knockdown, overexpression of NIPA2 and pharmacological inhibition of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) showed that NIPA2 increased osteoblast function, which was likely regulated by PTEN induced kinase 1 (PINK1)/E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy via the PGC-1α/forkhead box O3a(FoxO3a)/mitochondrial membrane potential (MMP) pathway. Furthermore, the negative effect of mitophagy on osteoblast function was confirmed by pharmacological regulation of mitophagy and knockdown of Parkin. Taken together, these results suggest that NIPA2 positively regulates the osteogenic capacity of osteoblasts via the mitophagy pathway in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Mitofagia , Osteoblastos/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/patologia , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus Tipo 2/complicações , Regulação para Baixo/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Glucose/toxicidade , Humanos , Magnésio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoblastos/ultraestrutura , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/complicações , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...